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1 Definitions

Be able to write precise definitions for any of the following concepts (where appropriate: both in
words and in symbols), to give examples of each definition, and to prove that these definitions are
satisfied in specific examples. Wherever appropriate, be able to graph examples for each definition.
What is/are:

1. a function of several variables? The domain and range of such functions?
2. the graph of a two-variable function?
3. a level curve and a contour map of a two-variable function?

a level surface of a three-variable function?
4. the limit (at a point) of a multi-variable function?
5. a continuous function of several variables? A discontinuous function?

How to determine that a function is discontinuous?
6. the operations (addition, subtraction, multiplication, division, composition) on continuituous

functions? When is continuity preserved?
7. a partial derivative? Higher order partial derivatives?
8. a partial differential equation (PDE)? The Laplace equation? What are some solutions?
9. a differentiable function? The linear approximation of a differentiable function? A tangent

plane to a two-variable differentiable function?
10. a tree diagram of a function? A branch of such a tree? What are they used for?

1These lecture notes are copyrighted and provided for the personal use of Fall 2020 Math 110 students only. They
may not be reproduced or posted anywhere without explicit written permission from Prof. Zvezdelina Stankova.
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2 Theorems

11. implicit differentiation? When do we have to use it?
12. the Wave equation? Traveling wave to the right/left? What are some/all solutions?
13. directional derivatives? How are they related to partial derivatives?
14. the gradient vector of a function? What is its relation to maximal and minimal rates of

change? What is its geometric interpretation?
15. the tangent line to the level curve of a two-variable function and the tangent plane to the

level surface of a three-variable function? a normal to the level curve at point P?
16. a critical point? A local maximum/minimum? A saddle point?
17. a global maximum/minimum?
18. interior, exterior, and boundary points of a set?
19. a closed set? A bounded set? Why are closed bounded sets “nice” for optimization problems?
20. a constrained optimization problem?
21. a Lagrange multiplier?
22. the AM-GM inequality?
23. the double integral of a function of two variables over a rectangle? Over any region in the

plane? What is its geometric interpretation?
24. a Riemann sum for a double integral over a rectangle?
25. the average value of a function over a 2d region?
26. partial integration?
27. iterated integral? How many such iterated integrals are there?
28. cross-section of a solid? Cavalieri’s principle?
29. a type I region in the plane? A type II ? What are they used for?
30. switching the order of integration?

2 Theorems

Be able to write what each of the following theorems (laws, propositions, corollaries, etc.) says.
Be sure to understand, distinguish and state the conditions (hypothesis) of each theorem and its
conclusion. Be prepared to give examples for each theorem, and most importantly, to apply each
theorem appropriately in problems. The latter means: decide which theorem to use, check (in
writing!) that all conditions of your theorem are satisfied in the problem in question, and then
state (in writing!) the conclusion of the theorem using the specifics of your problem.

1. “Contrapositive theorem”: If f(x, y) has different limits along two different paths ap-
proaching (a, b) (or one of them does not exist), then the limit of f at (a, b) does not exist.

2. Continuity theorem: Functions defined by algebraic expressions involving addition, multi-
plication, division, exponentiation, logs and (inverse) trig functions, and composition of such,
are continuous where they are well-defined (i.e., where denominators are not zero, expressions
inside square roots are non-negative, etc.).

3. Clairaut’s theorem: If f(x, y) has continuous mixed partial derivatives fxy and fyx on a
disc D(a,b) inside the domain Df , then fxy = fyx on this disc.

4. Sufficient condition for differentiability (using partial derivatives): If fx(x, y) and fy(x, y)
exist near (a, b) and are continuous at (a, b), then f(x, y) is differentiable at (a, b).

5. The linearization of f(x, y) at (x0, y0) is given by:

L(x, y) = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0).

The tangent plane to the graph of f(x, y) at (x0, y0, f(x0, y0)) is given by:

z = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0).

The linear approximation of f(x, y) at (x0, y0, f(x0, y0)) is given by:

f(x, y) ≈ f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0).
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2 Theorems

6. The Chain Rule for a variety of situations, paraphrased with the gradient vector.
7. Implicit function theorem: Suppose that x and y satisfy some equation F (x, y) = 0. If

∂F
∂y (a, b) 6= 0, then, in theory, the equation can be solved for value of x close to a, giving
values of y close to b. In practice, however, it might not be possible to find a expression for
y(x); we can still find ∂y

∂x = −Fx
Fy

, using implicit differentiation.

Similarly, if F (x, y, z) = 0 and Fx, Fy, Fz exist, with Fy 6= 0, then ∂y
∂x = −Fx

Fy
and ∂y

∂z = −Fz
Fy

.

8. Solutions to the wave equation: All solutions u(t, x) to the Wave equation utt = c2uxx
are of the form u(t, x) = g(x − ct) + h(x + ct), for some single-variable, twice-differentiable
functions g(y) and h(y).

9. Formula for directional derivatives: D~uf(x, y) = ∇f(x, y)◦~u for any unit vector ~u ∈ R2.
This shows that the gradient ∇f(x, y) points in the direction of the fastest growth of f at
(x, y) and the rate of this fastest growth is |∇f(x, y)|.

10. Formula for tangent lines/planes of level sets:
• If f(x, y) = c is a level curve of a differentiable function f(x, y) and P = (x0, y0) is a

point on this level curve, then ∇f(P ) ⊥ the level curve at P .
Hence, the tangent line to the level curve at P is given by:

∂f
∂x (x0, y0)(x− x0) + ∂f

∂y (x0, y0)(y − y0) = 0.

• If f(x, y, z) is differentiable at P = (x0, y0, z0), then its tangent plane at P has normal
vector ∇f(x0, y0, z0); i.e., it is given by:
∂f
∂x (x0, y0, z0)(x− x0) + ∂f

∂y (x0, y0, z0)(y − y0) + ∂f
∂z (x0, y0, z0)(z − z0) = 0.

11. Necessary Condition for Local Extrema: If f(x, y) is differentiable and has a local
extremum at (x0, y0), then ∇f(x0, y0) = 〈0, 0〉; i.e., f(x, y) has a critical point at P .

12. 2nd Derivative Test: If f(x, y) has a critical point at (a, b), and all 4 2nd-order partial
derivatives are continuous nearby (a, b), set D =

(
fxxfyy − f2

xy

) ∣∣
(a,b)

.

(a) If D > 0 and fxx(a, b) > 0, then f(a, b) is a local minimum.
(b) If D > 0 and fxx(a, b) < 0, then f(a, b) is a local maximum.
(c) If D < 0, then f(a, b) is a saddle point.
(d) If D = 0, the test fails to reach a conclusion. We need another test!

13. Extreme Value Theorem: If f(x, y) is continuous on a closed and bounded domain Df ,
then f has a global minimum and a global maximum (somewhere on Df ).

14. Nice Domain Method If f(x, y) has continuous partial derivatives fx and fy on a closed
and bounded domain Df in R2, then the global extrema of f on Df are among the two
sources:
(a) critical points: ∇f(x, y) = ~0 for some (x, y) ∈ Df .
(b) extrema of f along the boundary ∂Df .

15. Lagrange Multipliers: If f(x, y) has a global extremum along the constraint curve g(x, y) =
k, and both functions are differentiable, with ∇g 6= ~0, then this global extremum is obtained
at one of the solutions (x0, y0) of the system, where λ is called a Lagrange multiplier :∣∣∣∣∣ fx(x0, y0) = λgx(x0, y0);

fy(x0, y0) = λgy(x0, y0);
g(x0, y0) = k.

16. Fubini’s Theorem: If f(x, y) is continuous on a rectangleR = [a, b]×[c, d] then
∫∫
R f(x, y) dA =∫ b

a

∫ d
c f(x, y) dy dx =

∫ d
c

∫ b
a f(x, y) dx dy.

17. Type I Region: If D is of type I region in R2; i.e., a ≤ x ≤ b, and for any such fixed x,
g(x) ≤ y ≤ h(x), and f(x, y) is a function defined on D, then∫∫

D f(x, y) dA =
∫ b
a

∫ h(x)
g(x) f(x, y) dy dx.
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3 Problem Solving Techniques

3 Problem Solving Techniques

1. Proving that a limit does not exist: To show that a limit lim
(x,y)→(a,b)

f(x, y) does not

exist, we could attempt to find two different paths approaching the origin such that f(x, y)
has different limits along those paths. Alternatively we can also try to find a path along
which the limit does not exist. Some comments/tips:

• Usually, it will be easy to compute the limits along the axes lim
x→0

f(x, 0) and lim
y→0

f(0, y),

so we should do that first and then search for a path giving a different limit.
• Typically, the next best thing to try are the diagonals y = x and y = −x.
• If all these still produce the same limit, we can try a more general line y = mx for some

parameter m and see if for some m the limit is different from the above.

Example: We show that lim
(x,y)→(0,0)

f(x, y) where f(x, y) = x3y−xy3
x4+y4

does not exist:

First, we see that f(x, 0) = 0, so the limit along y = 0 is zero. Taking the limit along
x = 0 and y = x also gives 0, so this doesn’t help. Second, we try y = mx and see that

f(x,mx) = mx4−m3x4

x4+m4x4
= m(1−m2)

1+m4 .

Evidently, lim
x→0

f(x,mx) = m(1−m2)
1+m4 , so picking, say, m = 1

2 gives a limit 6= 0.

• If y = mx still doesn’t work, we can try to find the limits along y = xα or even y = mxα,
where α is some parameter. It might be beneficial to guess a value of α that makes
f(x, xα) particularly simple.

Example: We show that lim
(x,y)→(0,0)

f(x, y) where f(x, y) = yx2

x6+y2
does not exist.

We quickly see that f(x, 0) = 0, so we need to find a path along which the limit is not
0. If we try y = mx, we will still get 0 as the limit, so we try y = xα. We observe that:

f(x, xα) = x2+α

x6+x2α
.

Our denominator becomes quite simple if 2α = 6, so we might try α = 3. Indeed,
f(x, x3) = 1

2x does not even have a limit as x→ 0. (So looking back, we wouldn’t even
have had to consider any other path before.)

• Technically, our path could be any parametric curve; e.g. x(t) = e−t cos t, y(t) = e−t sin t
as t→∞. However, it is mostly sufficient to consider paths of the form y = g(x), x→ 0
or x = g(y), y → 0 for some function g(x) such that lim

x→0
g(x) = 0.

2. The Chain Rule: Let f(x, y) be a function of two variables x and y, which, in turn, are
functions of another variable t. Then

d
dtf(x(t), y(t)) = ∂f

∂x
dx
dt + ∂f

∂y
dy
dt .

If x and y instead are functions of two variables s, t, we have:
d
dtf(x(t, s), y(t, s)) = ∂f

∂x
∂x
∂t + ∂f

∂y
∂y
∂t and d

dsf(x(t, s), y(t, s)) = ∂f
∂x

∂x
∂s + ∂f

∂y
∂y
∂s .

This should be thought of as a chain of events: In the latter case, we want to know how a
(small) change ∆s in s affects f(x(t, s), y(t, s)). This happens in two different ways:
(a) A change ∆s in s causes a change ∆x = ∂x

∂s∆s in x, which, in turn, causes a change

∆1f = ∂f
∂x∆x in f(x, y).

(b) At the same time, the change in s causes a change ∆y = ∂y
∂s∆s in y and, thus, another

change ∆2f = ∂f
∂y∆y in f(x, y).

Therefore, the total change in f(x, y) is ∆f = ∆1f + ∆2f =
(
∂f
∂x

∂x
∂s + ∂f

∂y
∂y
∂s

)
∆s.
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4 Problems for Review

3. Implicit Differentiation: Let x, y and z satisfy some equation F (x, y, z) = 0. Suppose
(see the Implicit Function Theorem earlier) that we could, in theory, solve this equation for
x, obtaining x in terms of y and z. Then we could take the partial derivatives ∂x/∂y and
∂x/∂z. There is a shortcut for computing this, without actually solving for x:

∂x

∂y
= −∂F/∂y

∂F/∂x
;

∂x

∂z
= −∂F/∂z

∂F/∂x
.

4. Finding local mimima/maxima of a function f(x, y). This method also works when we
are asked to find and classify the critical points.

1. Compute ∇f(x, y) and find the solutions of ∇f(x, y) = ~0: these are the critical points.
2. Use the 2nd derivative test for every critical point to classify it; namely, compute
D = fxxfyy − f2

xy at the critical point. If:
• D > 0 and fxx > 0, then f(x, y) is a local minimum.
• D > 0 and fxx < 0, then f(x, y) is a local maximum.
• D > 0 and fxx = 0, go back and redo your computations of fxx and D because this

never happens!
• D < 0, then f(x, y) is a saddle point, so it is neither a minimum nor a maximum.
• D = 0, then we can’t say anything about this point using the 2nd derivative test.

5. Finding global minima/maxima on closed and bounded domains for a function
f(x, y) defined on Df . This is done in three steps:

1. Find the critical points of f in the interior of Df by solving ∇f(x, y) = 〈0, 0〉. (There
might be solutions that don’t lie in Df but we ignore them.) Classifying the criticial
with the second derivative test (or otherwise) is not necessary here.

2. Find the extrema of f along the boundary ∂Df . Sometimes this requires breaking the
boundary up into pieces where we can either reduce f |∂Df to a single-variable calculus
problem (e.g., parametrize lines or circles and plug them into f) or we can use the
method of Lagrange Multipliers.

3. Compute the value of f on all the thus-found critical points in the interior and extrema
along the boundary, and pick the maxima and minima among them.

6. Lagrange Multipliers: We want to maximize/minimize a function f(x, y) on a curve de-
scribed by an equation g(x, y) = k.

1. Compute ∇f and ∇g.
2. Solve the system of equations ∇f(x, y) = λ∇g(x, y) and g(x, y) = k for x, y, and λ (we

only need the solutions for x and y).
3. Compute the value of f(x, y) for every solution and decide which one(s) are the max-

ima/minima.

4 Problems for Review

The exam will be based on Homework, Lecture, Section and Quiz problems. Review all homework
problems, and all your classnotes and discussion notes. Such a thorough review should be enough
to do well on the exam. If you want to give yourself a mock-exam, select 4 representative problems
from various HW assignments, give yourself 40 minutes, and then compare your solutions to the
VW solutions. If you didn’t manage to do some problems, analyze for yourself what went wrong,
which areas, concepts and theorems you should study in more depth, and if you ran out of time,
think about how to manage your time better during the upcoming exam.
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4 Problems for Review

4.1 Limits and Continuity

1. True/False practice:
(a) If f is a function whose domain contains points arbitrarily close to (2, 3), then

lim
(x,y)→(2,3)

f(x, y) = (2, 3).

Solution: False. This doesn’t even make sense because f is single-valued.

(b) If lim
(x,y)→(a,b)

exists, the function f(x, y) must be defined or continuous at (a, b).

Solution: False. We can for example define f(x, y) to be zero when (x, y) 6= (0, 0)
and to be 1 when (x, y) = (0, 0). If we then pick (a, b) = (0, 0) the limit of f(x, y) exists
for (x, y) → (a, b) but it is not equal to f(a, b). We could also leave f(x, y) undefined
at the origin to give a counterexample to the first statement.

(c) The function f(x, y) = x− y + 1 is not continuous at the point (0, 1).

Solution: False. This function is linear, so it is continuous.

(d) To show that the limit at a point (a, b) exists, it suffices to find two paths to the point
(a, b) where the limits of f(x, y) agree.

Solution: False. We would have to show the limit agrees on every path, but this is
not feasible.

(e) To prove that the limit of f(x, y) at (x, y)→ (a, b) does not exist, we have to prove that
the limits along at least 3 different paths are different.

Solution: False. It is sufficient to show that the limits along two different paths are
different.

(f) If f(x, y)→ L as (x, y)→ (a, b) along any line through (a, b), then lim
(x,y)→(a,b)

f(x, y) = L.

Solution: False. One counterexample is

f(x, y) =

{
0 if y ≤ 0 or y ≤ 2x2

1 if 0 < y < 2x2

Along every straight line passing through the origin this will be constant 0 near the
origin, but the limit approaching via the parabola y = x2 is 1.

(g) The (ε, δ)-definition of limits and continuity can be extended to functions of 3 and more
variables.

Solution: True. We just need to replace
√

(x− a)2 + (y − b)2 by√
(x− a)2 + (y − b)2 + (z − c)2 etc.

(h) If f and g are two continuous functions in R, (a, b) ∈ R2 and lim
x→a

f(x) = L1 and

lim
y→b

g(y) = L2 then lim
(x,y)→(a,b)

f(x)g(y) = L1L2.

Solution: True. h1(x, y) = f(x) and h2(x, y) = g(y) are continuous functions so their
product h1(x, y)h2(x, y) = f(x)g(y) is continuous.

2. Show that the limit does not exist.

6



4 Problems for Review

(a) lim
(x,y)→(0,0)

xy2

x4+xy3
;

Solution: Approaching the origin along the diagonal x = y gives a limit

lim
x→0

x3

2x4
= lim

x→0

1

2x

which does not exist

(b) lim
(x,y)→(1,0)

x+y2

(x−1)3+y3
.

Solution: Approaching the limit along the x-axis, i.e. y = 0 we need to consider

lim
x→1

x

(x− 1)3

which does not exist since the numerator has limit 1 but the denominator has limit 0.

3. Discuss continuity of the following functions:

(a) 2x4y
x8+y2

;

Solution: This is obviously continuous whenever the denominator is nonzero, i.e.
everywhere except at the origin. But at the origin it is not continuous (or rather
we can’t extend the function to the origin in a way which makes it continuous): If
we approach the origin via any of the coordinate axes we get a limit of 0, but if we
approach it via the path y = x4 we get a limit

lim
x→0

2x4x4

x8 + x8
= 1

Hence the limit lim(x,y)→(0,0) f(x, y) does not exist.

(b) x2 cos2 x
x2+(y−1)2

.

Solution: This is continuous when the denominator is nonzero, so everywhere except
at (0, 1). At (0, 1) it can’t be defined in a ways which makes the function continuous:
Approaching (0, 1) via the y-axis, we get the limit

lim
y→1

0 cos2(0)

(y − 1)2
= 0

On the other hand if we approach (0, 1) on the line y = 1 we get the limit

lim
x→0

x2 cos2 x

x2
= cos2(0) = 1

4. Find the domain of the following functions and prove that they are continuous there:
(a) f(x, y) = x2 + 2xy + ex − cos y − 2;

Solution: This is continuous because it is a sum of continuous functions.

(b) f(x, y) = xy2

x2+y2
for (x, y) 6= (0, 0) and f(0, 0) = 0. (More than one solution?!)
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4 Problems for Review

Solution: Away from the origin this is a quotient of continuous functions with nonzero
denominator and therefore continuous.
To show continuity at the origin first observe that |xy| ≤ 1

2

(
x2 + y2

)
. This inequality

can be seen by applying the binomial formula to the left hand sides of (x+ y)2 ≥ 0 and
(x − y)′2 ≥ 0. Dividing both sides of the inequality by x2 + y2 and multiplying by |y|
in turn gives

|f(x, y)| = |xy2|
x2 + y2

≤ 1

2
|y| (1.1)

Now we use the ε–δ-definition of continuity to show that f is continuous. Given any
ε > 0 we choose δ = 1

2ε. Now when
√
x2 + y2 < δ we must have |y| < δ and therefore

|f(x, y) − 0| < 1
2 |y| <

1
2δ = ε using the inequality (1.1). This shows that the limit of

f(x, y) are (x, y)→ (0, 0) is zero and since we defined f(0, 0) = 0, f(x, y) is continuous.

4.2 Partial Derivatives

1. True/False practice:
(a) Clairaut’s Theorem says that fxy = fyx.

Solution: True, but Clairaut’s theorem also has a prerequisite: All second partial
derivatives of f , that is fxx, fxy, fyx and fyy need to be continuous.

(b) fxy = ∂2f
∂y∂x .

Solution: True. The shorthand fx means ∂f
∂x and hence fxy = (fx)y = ∂

∂y
∂f
∂x = ∂2f

∂y∂x .

(c) Any second partial derivative of a sum is the sum of the corresponding second partial
derivatives, assuming all these derivatives exist:

∂2(f1+f2)
∂w2 = ∂2f1

∂w2 + ∂2f2
∂w2 .

Solution: True. A (partial) derivative of a sum of two functions is the sum of the
(partial) derivatives, so using this fact proves this statement.

2. Implicit differentiation:
(a) Find ∂y

∂x if x2 + 2xy2 + z3 + xyz + y = 2.

Solution: Define F (x, y, z) = x2 +2xy2 +x3 +xyz+y−2 so we can write our equation
as F (x, y, z) = 0. Then by the formula from the lecture

∂y

∂x
= −∂F/∂x

∂F/∂y

= −2x+ 2y2 + 3x2 + yz

4xy + xz + 1

(b) Find ∂x
∂y for the above equation.

Solution: ∂x/∂y is just the reciprocal of ∂y/∂x so

∂x

∂y
= − 4xy + xz + 1

2x+ 2y2 + 3x2 + yz
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4 Problems for Review

(c) Find ∂y
∂x for ey sinx = x+ xy.

Solution: As before define F (x, y) = ey sinx− x− xy. Then

∂y

∂x
= −∂F/∂x

∂F/∂y

= −e
y cosx− 1− y
ey sinx− x

3. Higher order computation:

(a) Prove that c(x, t) = 1√
Dt
e−

x2

4
Dt is a solution of the diffusion equation ∂c

∂t = D ∂2c
∂x2

.

Solution:

∂c

∂t
= − 1

2
√
D t3/2

e−x
2/4Dt +

1√
Dt

x2

4Dt2
e−x

2/4Dt

∂c

∂x
= − x

2Dt

1√
Dt

e−x
2/4Dt

∂2c

∂x2
= − 1

2Dt
√
Dt

e−x
2/4Dt +

x2

4D2t2
1√
Dt

e−x
2/4Dt

Solution: We see that the RHS of the third equation is D times the RHS of the first,
showing that c satisfies the diffusion equation.

(b) (Computation avid?) Find ∂2c
∂t2

for the above function c(x, t).

Solution:

∂2c

∂t2
=

3

4
√
Dt5/2

e−x
2/4Dt − x2

8D
√
Dt7/2

e−x
2/4Dt

− 5x2

8D
√
Dt7/2

e−x
2/4Dt +

x4

16
√
DD2t9/2

=
12D2t2 − 12Dtx2 + x4

16D5/2t9/2
e−x

2/4Dt

4. The Van der Waals equation equation of state for a gas is
(
p+ n2a

V 2

)
(V −nb) = nRT, where

p is the pressure, V the volume, T the temperature, n the amount of moles in the gas, and
R, a, b are positive constants. We can always assume that V > nb.
(a) Calculate ∂T

∂p and ∂T
∂V .

9
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Solution: We can easily solve the equation for T obtaining T = 1
nR

(
p+ n2a

V 2

)
(V −nb).

Now we compute

∂T

∂p
=
V − nb
nR

=
V

nR
− b

R

∂T

∂V
=

1

nR

(
p+

n2a

V 2

)
− 2

V − nb
nR

n2a

V 3

=
p

nR
+
a(2nb− V )n

RV 3

(b) Give the linear approximation of T for a small increase of p and V .

Solution:

T (p+ ∆p, V + ∆V ) = T (p, V ) +
∂T

∂p
(p, V )∆p+

∂T

∂V
(p, V )∆V

= T (p, V ) +
V − nb
nR

∆p+
1

nR

(
p+

an(2nb− V )

RV 3

)
∆V

(c) Find the critical point of a Van der Waals gas (pc, Vc) at which ∂p
∂V = ∂2p

∂V 2 = 0. (This is
a challenging computation!)

10
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Solution: We can use implicit differentiation to find ∂p/∂V : Define F (p, V, T ) =(
p+ n2a

V 2

)
(V − nb)− nRT . Then

∂p

∂V
= −∂F/∂V

∂F/∂p

=
p+ an2(2nb− V )/V 3

nb− V

=
pV 3 + an2(2nb− V )

V 3(nb− V )
(2.2)

Note that the computation of the partial derivatives of F is almost the same as that of
the partial derivatives of T .
For now let us denote the numerator of (2.2) by N(p, V ) and the denominator by
D(p, V ). We need to find solutions of N(pc, Vc)/D(pc, Vc) = 0, or equivalently

N(pc, Vc) = 0 (2.3)

that also satisfy

0 =
∂2p

∂V 2
=

∂N
∂V D −N

∂D
∂V

D2
(2.4)

Equation (2.4) is equivalent to ∂N
∂V D −N

∂D
∂V = 0 which simplifies to

∂N

∂V
= 0 (2.5)

using equation (2.3).
Writing this out we obtain

pcVc
3 = an2(Vc − 2nb) (from (2.3))

3pcVc
2 = an2 (from (2.5))

and find the solution Vc = 3nb, pc = 27a/b2.

4.3 Tangent Planes and Linear Approximations

1. True/False practice:
(a) The linear approximation L(a,b)(x, y) of a function f(x, y) is always a good way to ap-

proximate the function around (a, b).

Solution: True if the function is differentiable, but False in general.

2. Prove that if f is a function of two variables that is differentiable at (a, b), then f is continuous
at (a, b). (Hint: go back to the definitions!)

11



4 Problems for Review

Solution: Recall that f is differentiable at (a, b) if

f(a+ ∆x, b+ ∆y) = f(a, b) + fx(a, b)∆x+ fy(a, b)∆y+ ε1(∆x,∆y)∆x+ ε2(∆x,∆y)∆y

for some continuous functions ε1 and ε2 such that ε1 → 0 and ε2 → 0 as ∆ → 0 and
δ → 0. Using this we see that f(x, y) is continuous at (a, b):

lim
(x,y)→(a,b)

f(x, y) = lim
(∆x,∆y)→(0,0)

f(a+ ∆x, b+ ∆y)

= lim
(∆x,∆y)→(0,0)

(
f(a, b) + fx(a, b)∆x+ fy(a, b)∆y + ε1(∆x,∆y)∆x+ ε2(∆x,∆y)∆y

)
= f(a, b) + lim

(∆x,∆y)→(0,0)

(
ε1(∆x,∆y)∆x+ ε2(∆x,∆y)∆y

)
= f(a, b)

3. Find the equation of the tangent plane to z = f(x, y) = x2 cos(πy)− 6
xy2

at (2,−1).

Solution: The normal vector to the tangent plane is given by

∇f(2,−1) =

〈
2 · 2 cos(−π) +

6

22(−1)2
,−π22 sin(−π) + 2

6

2(−1)3

〉
= 〈−5/2,−6〉

We also see that f(2,−1) = −7) so the equation for the plane is z + 7 = −5
2(x− 2)−

6(y + 1).

4. Find the linear approximation to z = cos (sin y − x) at (−2, 0).

Solution: First we compute the partial derivatives of z:

∂z

∂x
= sin(sin y − x) = sin(2)

∂z

∂y
= − sin(sin y − x) cos y = − sin(2)

Using this we get the linear approximation z ≈ cos(2) + sin(2)(x+ 2)− sin(2)y

4.4 Chain Rule

1. True/False practice:
(a) For u = f(x, y), where x = x(r, s, t), y = y(r, s, t), we can find ∂u

∂r = ∂u
∂x

∂x
∂r + ∂u

∂y
∂y
∂r .

(Assume all functions are differentiable.)

Solution: True, this is the chain rule as presented in the lecture.

2. A function f is called homogeneous of degree n if it satisfies the equation

f(tx, ty) = tnf(x, y) (4.6)

for all t, where n is a positive integer and f has continuous second order derivatives.
(a) Verify that f(x, y) = x2y + 2xy2 + 5y3 is homogeneous of degree 3.

Solution: f(tx, ty) = t2x2ty + 2txt2y2 + 5t3y3 = t3(x2y + 2xy2 + 5y3)

12
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(b) Show that if f is homogeneous of degree n then x∂f∂x + y ∂f∂y = nf(x, y). (Hint: use the
Chain Rule to differentiate f(tx, ty) with respect to t.)

Solution: Using the chain rule we obtain

d

dt
f(tx, ty) =

∂f

∂x
(tx, ty)

d

dt
tx+

∂f

∂y
(tx, ty)

d

dt
ty = x

∂f

∂x
(tx, ty) + y

∂f

∂y
(tx, ty) (4.7)

On the other hand, the homogeneity condition (4.6) shows that

d

dt
f(tx, ty) =

d

dt
tnf(x, y) = ntn−1f(x, y) (4.8)

Now if we can equate the right hand sides of equations (4.7) and (4.8) and set t = 1 to
obtain the desired equation.

(c) If f is homogeneous of degree n, show that fx(tx, ty) = tn−1fx(x, y) for t > 0.

Solution: We take the partial u derivative of both sides of equation f(tu, tv) =
tnf(u, v) (this is just 4.6 plugging in u and v instead of x and y):

∂

∂u
tnf(u, v) = tnfx(u, v)

∂

∂u
f(tu, tv) = tfx(tu, tv)

Hence tn−1fx(u, v) = fx(tu, tv) after canceling one t and plugging in u = x, v = y shows
the desired equation.

3. Let g(s, t) = f(s2 − t2, t2 − s2) and f be differentiable. Prove that t∂g∂s + s∂g∂t = 0.

Solution: We compute, using x = s2 − t2, y = t2 − s2):

∂g

∂s
=
∂f

∂x

∂x

∂s
+
∂f

∂y

∂y

∂s
=
∂f

∂x
2s− ∂f

∂y
2s

∂g

∂t
=
∂f

∂x

∂x

∂t
+
∂f

∂y

∂y

∂t
= −∂f

∂x
2t+

∂f

∂y
2t

4. Let f(u− v2, u3 + v) be differentiable, and so be its derivatives. Find ∂2f
∂u∂v .

Solution: Using x = u− v2, y = u3 + v we compute:

∂f

∂v
=
∂f

∂x

∂x

∂v
+
∂f

∂y

∂y

∂v
= −fx2v + fy

∂2f

∂u∂v
= −fxx2v

∂x

∂u
− fxy2v

∂y

∂u
+ fyx

∂x

∂u
+ fyy

∂y

∂u
= −fxx2v + fxy

(
1− 6u2v

)
+ fyy3u

2

4.5 Gradient Vector

1. True/False practice:
(a) The gradient vector ∇f(a, b) for a two-variable function z = f(x, y) lives in 3d space

and is perpendicular to the tangent plane of the graph at (a, b, f(a, b)).
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Solution: False. The gradient vector of a n-variable function lives in n-dimensional
space (so 2d space in our case). The gradient is perpendicular to the level curve
f(x, y) = f(a, b) passing through (a, b).

(b) D~ı+~f(x, y) = fx~ı+ fy~.

Solution: True. D~ı+~f(x, y) = ∇f(x, y) · 〈1, 1〉 = fx~ı+ fy~

(c) The gradient of a function is always orthogonal to the direction of maximum change of
the function.
Solution: False. The gradient vector points in the direction of maximum change and
is perpendicular to all the directions of zero change.

2. Find the maximum rate of change and its direction for f(x, y) =
√
x2 + y2 at (−1, 1).

Solution:

∇f(x, y) =

〈
x√

x2 + y2
,

y√
x2 + y2

〉
so in particular ∇f(−1, 1) = 〈−1/

√
2, 1/
√

2〉 points in the direction of maximal change.
The maximum rate of change is

|∇f(−1, 1)| =

√(
−1√

2

)2

+

(
1√
2

)2

= 1

4.6 Extrema

1. True/False practice:
(a) If f(x, y) has two local maxima, then it must have a local minimum too.
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Solution: False. This is true for single-variable functions but no longer holds in 2d.
For example, the function f(x, y) = x4−x2 + 1

2y
2 depicted below has two minima with

a saddle point lying between them.

(b) The normal vector to the surface z = f(x, y) at the point (a, b, f(a, b)) is

〈fx(a, b), fy(a, b),−1〉.
Solution: True. This surface is described by the equation f(x, y) − z = 0 whose is
〈fx(a, b), fy(a, b),−1〉.

(c) To find the maximum of f(x, y), one simply needs to find the points (a, b) at which
fx(a, b) = 0 and fy(a, b) = 0.

Solution: False. These points could also be maxima or saddle points, for example.

(d) Suppose the 2nd partial derivatives of D is continuous on a disk near (a, b). Then using
the 2nd derivative test, if the determinant D > 0 and fyy(a, b) > 0, we cannot determine
if this is a local minimum or maximum because we do not know the sign of fxx(a, b).

Solution: False. The second derivative test does tell us that (a, b) is a minimum in
this case. And actually we do know that fxx(a, b) is positive since 0 < D = fxxfyy−f2

xy

implies fxx > f2
xy/fyy > 0.

(e) The normal vector to the surface z = f(x, y) is three-dimensional, while the normal
vector to the level curve of z = f(x, y) is two-dimensional.

Solution: True. The surface z = f(x, y), i.e. the graph of f(x, y) lives in three-
dimensional space while the level curve lives in two-dimensional space.
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(f) The graph of f(x, y) = x2 − xy − y2 has a saddle point.

Solution: We have ∇f(x, y) = 〈2x− y,−2y− x〉 which is only zero at (0, 0). At that
point we obtain fxx = 2, fyy = −2, fxy = −1, so D = fxxfyy − fxy2 = −5 < 0 and by
the second derivative test (0, 0) is a saddle point.

2. Find a classify all the critical points of the following functions:
(a) f(x, y) = 7x− 8y + 2xy − x2 + y2;

Solution: We need to solve ∇f(x, y) = 〈7 + 2y − 2x,−8 + 2x+ 2y〉 = 〈0, 0〉. Adding
the two equations give 4y − 1 = 0, so y = 1

4 and from this we see that x = 15
4 . The

second derivatives of f are fxx = −2, fyy = 2, fxy = 2, so D = −8 < 0 at every point.
In particular, our critical point is a saddle point.

(b) f(x, y) = (3x+ 3x3)(y2 + 2y);

Solution: We first find the solutions of ∇f(x, y) = 〈(y2 +2y)(2+9x2), (3x+3x3)(2y+
2)〉 = 〈0, 0〉. Since 9x2+2 is always positive, we must have y2+2y = 0, so either y = 0 or
y = −2 in order to satisfy the first equation. Both of these values for y give 2y+ 2 6= 0,
so the second equation force 3x + 3x3 = 0, i.e. x = 0. Hence our critical points are
(0, 0) and (0,−2).
The second derivatives of f are

fxx = 18x

fxy = 2y + 2

fyy = 2

We see that D(0, 0) = −4 = D(0,−2), so both of these are saddle point.

(c) f(x, y) = (y − 2)x2 − y2;

Solution: Solutions of ∇f(x, y) = 〈2x(y − 2), x2 − 2y〉 = 〈0, 0〉 must satisfy x2 = 2y
and either x = 0 or y = 2. In the first case we get (0, 0), the second one becomes (2, 2).
The second derivatives of f are

fxx = 2y − 4

fxy = 2x

fyy = −2

hence we obtain D(0, 0) = 8 > 0, fxx(0, 0) = −4 < 0 and D(2, 2) = −16. Using the
second derivative test we see that (0, 0) is a local maximum and (2, 2) is a saddle point.

(d) f(x, y) = xyex
2+y2 .
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Solution: ∇f(x, y) =
〈(

1 + 2x2
)
yex

2+y2 , x
(
1 + 2y2

)
ex

2+y2
〉

. Since the exponential

factors, as well as 1 + 2x2 and 1 + 2y2 are always positive we might as well ignore when
finding the zeros. So we are left with 〈x, y〉 = 〈0, 0〉. The second derivatives of f are

fxx =
(
6x+ 4x3

)
yex

2+y2

fxy =
(
1 + 2x2

) (
1 + 2y2

)
ex

2+y2

fyy = x
(
6y + 4y3

)
ex

2+y2

Hence D(0, 0) = −1, so (0, 0) is a saddle point.

4.7 Lagrange Multipliers

1. True/False practice:
(a) The method of Lagrange multipliers gives us an efficient method to find the intersection

between the plane z = 2x− y + 3 and the ellipsoid x2 + y2 + z2 = 1.

Solution: False. Lagrange multipliers are used to find extrema of a function satisfying
a constraint but here we would need to solve a system of equations.

(b) To find the extrema of a function via MLM, we must find (among other things) the value
of the corresponding Lagrange multiplier.
Solution: False. We don’t care about the value of λ when using Lagrange multipliers.

2. Consider f(x, y) = xy and x2 − y = 12. We assume y ≤ 0.
(a) Why do we need y ≤ 0 here?

Solution: Else a minimum and maximum would not exist, since we could just pick
y very large and x = ±

√
y + 12 would also have a very large magnitude, resulting in a

very large or very negative value of f(x, y).

(b) Find the extreme values of f subject to the above constraints.
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Solution: The shape describes the portion of the parabola y = x2−12 in the third and
fourth quadrant. This shape is closed and bounded so we are guaranteed the existence
of global maxima and minima (though possibly not unique). If they lie in the part
of the parabola where y < 0 we will find them with Lagrange multipliers. The two
boundary points of this shape which occur at y = 0 need to be handled separately.
This part is not very hard, since we immediately see that immediately see that f has
value f(0, anything) = 0 on them.
Now we proceed to find the critical points of f on the parabola g(x, y) = x2−y−12 = 0.
The system of equations we need to solve is obtained from ∇f(x, y) = 〈y, x〉 and
∇g(x, y) = 〈2x,−1〉. It is

y = 2λx

x = −λ
x2 − y = 12

Combining the first two equations we see that y = −2x2 and using the third 3x2 = 12,
so x = ±2 and y = −8. Computing the value of f at these points we see that the global
maximum of f is at (2,−8) and has a value of 16 while the global minimum with value
−16 is at (−2,−8).

3. Consider f(x, y, z) = xyz and g(x, y, z) = x+ y2 + 9z2 = 4. We assume x ≥ 0.
(a) Why do we need x ≥ 0 here?

Solution: x ≥ 0 forces y2 + 9z2 ≤ 4 which gives us a bounded domain. Else global
maxima and minima would not exist.

(b) Find the extreme values of f subject to the above constraints.
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Solution: As before we know that global maxima and minima exist because the
(constrained) domain for this problem is bounded and closed. The boundary of this
surface is given by those points on the surface where x = 0, so f is zero on the boundary.
For the interior x > 0 of the surface we use Lagrange multipliers. First we compute
∇f(x, y, z) = 〈yz, xz, xy〉 and∇g(x, z, y) = 〈1, 2y, 18z〉. Now we nee to solve the system
of equations

yz = λ

xz = 2λy

xy = 18λz

x+ y2 + 9z2 = 4

Substituting the first equation into the second two we obtain xz = 2y2z and xy = 18yz2.
For now, let’s assume that y 6= 0 and z 6= 0 and come back to those cases later. This
allows us to cancel the zs and ys on both sides of these equations giving 2y2 = x = 18z2.
Plugging this into the constraint gives us 4y2 = 4 and hence y = ±1, x = 2 and
z = ±1/3. The values of f at these four critical points are f(2, 1, 1/3) = 2/3 =
f(−2, 1,−1/3), f(−2, 1, 1/3) = −2/3 = f(2, 1,−1/3). Before we conclude that these
are the maxima and minima of f with the given constraints we need to go back to the
cases where y = 0 or z = 0. But if any variable is zero then f(x, y, z) = 0, so these
points can’t be maxima or minima (since we’ve already found points with larger and
smaller values).

4.8 Integrals

1. True/False practice:
(a) For a continuous function f , the value

∫∫
R f(x, y) dA can be viewed as a volume.

Solution: Yes, this is the volume below the graph of f restricted to R.

(b) For a continuous function f ,
∫ 1

0

∫ y
0 f(x, y) dx dy =

∫ 1
0

∫ x
0 f(x, y) dy dx.

Solution: False. The integral on the left is taken over the region 0 ≤ x ≤ 1, 0 ≤ y ≤ x
while the second one is taken over the region 0 ≤ x ≤ y, 0 ≤ y ≤ 1. These are different
so these integral won’t be the same in general. An explicit example is f(x, y) = x: The
LHS evaluates to 1

6 while the R’S evaluates to 1
3 .

(c)
∫∫
D f(x, y) dA =

∫∫
D1
f(x, y) dA+

∫∫
D2
f(x, y) dA if D = D1 ∪D2.

Solution: False. This only works if D1 and D2 overlap at most along their boundary.

2. Let I =
∫∫
D 5x3 cos(y3) dA where D is the region bounded by y = 2, y = x2/4 and x ≥ 0.

(a) Make a quick sketch of the area of interest.
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Solution:

(b) Evaluate I on D.

Solution:
∫∫
D 5x3 cos(y3) dA =

∫ 2
0

∫ 2
√
y

0 5x3 cos(y3) dx dy =
∫ 2

0 20 cos(y3)y2 dy =∫ 8
0

20
3 cosu du = 20

3 sin(8)

3. Find the volume enclosed under the plane 3x+ 2y − z = 0 and above the region between by
the parabolas y = x2 and x = y2.

Solution: This plane is the graph of the function f(x, y) = 3x+ 2y hence the volume
is∫ 1

0

∫ √x
x2

3x+ 2y dy dx =

∫ 1

0
3x(
√
x−x2) +x4−x dx = 3(2/5− 1/4) + 1/5− 1/2 = 3/4

4. Evaluate the following integrals over the following regions:
(a)

∫∫
D x(y − 1) dA, where D is bounded by y = 1− x2 and y = x2 − 3.

Solution: We first need to find the points where the curves y = 1 − x2, y = x2 − 3
intersect. These are the solutions of 1 − x2 = x2 − 3 that is x = ±

√
2. Now we can

integrate∫ √2

−
√

2

∫ 1−x2

x2−3
(1 + x)y dy dx =

∫ √2

−
√

2
(1 + x)

1

2
((1− x2)2 − (x2 − 3)2) dx

=

∫ √2

−
√

2
(2x3 + 2x2 − 4x− 4) dx

=
1

2
x4 +

2

3
x3 − 2x2 − 4x

∣∣∣∣
√

2

−
√

2

=
8

3

√
2− 8

√
2 = −16

√
2

3

(b)
∫∫
D 3− 6xy dA, where D is shown below.
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Solution: It is easiest to break D up into the part D1 above the x-axis and the part
D2 below. Then ∫∫

D1

3− 6xy dA =

∫ 1

−1

∫ 1

x2
3− 6xy dy dx

=

∫ 1

−1
3(1− x2)− 3x+ 3x5 dx

= 6− 6/3− 0 + 0 = 4

and ∫∫
D2

3− 6xy dA =

∫ 2

−2

∫ −x2
−4

3− 6xy dy dx

=

∫ 2

−2
3(4− x2)− 3x5 + 48x dx

= 48− 16− 0 + 0 = 32

Hence I = 32 + 4 = 36.

4.9 Old Math 53 Exam Problems

1. Do the following limits exist? If a limit exists, explain why and find the limit. If a limit does
not exist, explain why not. (Hint: The (ε, δ)-definition doesn’t have to be mentioned here.)

(a) lim
(x,y)→(0,0)

x2−y√
x2+y2

.
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Solution: The function g(x, y) = x2−y√
x2+y2

is continuous on its domain, i.e., on all of

R2 except for the origin (0, 0) (why?). Unfortunately, our limit asks for (x, y)→ (0, 0),
so we cannot use “continuity” reasoning to find the limit. Equally, we cannot say that
the limit does not exist just because (0, 0) is not in the domain of g(x, y). We need a
different way of deciding if the limit exists or not. If the limit exists, then along all
curves approaching (0, 0) that limit will have to be the same. Let’s try the positive
x-axis, i.e., (x, y) = (x, 0) with x > 0:

lim
(x,0)→(0,0)

x2 − 0√
x2 + 02

= lim
x→0

x2

√
x2

= lim
x→0

x2

|x|
|x|=x>0

= lim
x→0

x2

x
= lim

x→0
x = 0.

Now let’s try the positive y-axis, i.e., (x, y) = (0, y) with y > 0:

lim
(0,y)→(0,0)

02 − y√
02 + y2

= lim
y→0

−y√
y2

= lim
y→0

−y
|y|

|y|=y>0
= lim

y→0

−y
y

= lim
y→0

(−1) = −1.

Since 0 6= −1, the given limit does not exist.

(b) lim
(x,y)→(π,π)

cos(x+y)
x+y .

Solution: The function f(x, y) = cos(x+y)
x+y is continuous on its domain, i.e., on all of

R2 except for the line y = −x. This is true because the function is a quotient of the
trigonometric function cos(x+ y), which is continuous everywhere, and the polynomial
x+ y, which is continuous everywhere but attains 0 value exactly where y = −x. The
point (π, π) is in the domain of the function, hence the function is continuous at (π, π)
and its value there equals the desired limit:

lim
(x,y)→(π,π)

cos(x+ y)

x+ y

cont.
= f(π, π) =

cos(π + π)

π + π
=

cos(2π)

2π
=

1

2π
·

2. A mountain lion runs on a mountain whose height above the point (x, y) is z = x2 + sin2(xy).
(a) In which direction(s) should the mountain lion run from point (1, 0, 1) so that the height

is increasing at the fastest possible rate? What is this fastest rate?

Solution: The fastest possible rate of increase is attained in the direction of the
gradient:

∇z = 〈∂z/∂x, ∂z/∂y〉 = 〈2x+ 2 sin(xy) cos(xy)y, 2 sin(xy) cos(xy)x〉.

At (1, 0, 1), this gradient is simply ∇z(1, 0) = 〈2, 0〉, and the fastest possible rate of
change is the length of the gradient, i.e., |∇z(1, 0)| = |〈2, 0〉| = 2.

(b) In which direction(s) should the mountain lion run from point (1, 0, 1) so that the height
is increasing at half of the fastest possible rate?
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4 Problems for Review

Solution: Half of the fastest possible rate of height increase at point (1, 0, 1) is 1
2 ·2 = 1.

Let ~u = 〈a, b〉 be a unit vector in the desired direction. Then the directional derivative
D~u(1, 0) = 1 is the desired rate of change of height at (1, 0, 1) in the direction of ~u; it
can be calculated using the dot product with the gradient:

1 = D~u(1, 0) = ~u ◦ ∇z(1, 0) = 〈a, b〉 ◦ 〈2, 0〉 = 2a+ 0b = 2a.

Thus, a = 1/2 and b must be such that ~u = 〈1/2, b〉 is unit, i.e., (1/2)2 + b2 = 1, from
which b2 = 3/4 and b = ±

√
3/2. Therefore, the desired directions in which the height

is increasing at a rate equal to half of the fastest possible rate are ~u1 = 〈1/2,
√

3/2〉 and
~u2 = 〈1/2,−

√
3/2〉.

3. Find the absolute maximum and minimum values attained by the function

f(x, y) = xy + 12(x+ y)− (x+ y)2

on the triangle between lines x = 0, y = 0, and x+ y = 10.
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4 Problems for Review

Solution: The region D in the xy-plane where the function is defined is the triangle
with vertices (0, 0), (10, 0) and (0, 10) (see the figure). The function f(x, y) is continuous
on D (and on all of R2), as it is a polynomial in two variables. The region D is closed
and bounded. Hence, by EVT, f(x, y) will have global extrema on D. To find them,
we first find the critical points in the interior of D:∣∣∣∣ ∂f

∂x = y + 12− 2(x+ y) = 12− 2x− y = 0
∂f
∂x = x+ 12− 2(x+ y) = 12− x− 2y = 0

⇒
∣∣∣∣ y − x = 0

3(x+ y) = 24
⇒

∣∣∣∣ y = x
x+ y = 8

From here, x = y = 4 and the only critical point inside D is (4, 4) with f(4, 4) =
16 + 12 · 8− 82 = 48. Note that (4, 4) is indeed inside D, as 4 ≥ 0, and 4 + 4 = 8 ≤ 10.
To find the critical points on the boundary ∂D of D, note that the three sides of the
triangle are the components of ∂D. Restricting to each side reduces the problem to
one-variable calculus:

(a) Along y = 0, we have f(x, 0) = 12x− x2 = x(12− x) for x ∈ [0, 10]. As x(12− x)
is a continuous function on a closed and finite interval, it attains a minimum and a
maximum along [0, 10]. These occur among the critical points inside (0, 10): where
d
dx(12x− x2) = 12− 2x = 0, i.e., at x = 6 ∈ (0, 10); OR among the endpoints at x = 0
and x = 10. The corresponding values of the function are f(6, 0) = 36, f(0, 0) = 0,
f(10, 0) = 20.

(b) As the function and the region are symmetric with respect to variables x and y,
along side x = 0, the function f(0, y) = y(12 − y) for y ∈ [0, 10] will have its global
extrema among the following possibilities: f(0, 6) = 36, f(0, 0) = 0, f(0, 10) = 20.

(c) Along the third side of the triangle, x + y = 10, we can eliminate one variable
y = 10 − x to obtain f(x, 10 − x) = x(10 − x) + 12 · 10 − 102 = −x2 + 10x + 20 for
x ∈ [0, 10]. Again, this is a continuous function on a closed and finite interval, and
hence it attains a minimum and a maximum along [0, 10]. The critical points inside
(0, 10) occur where d

dx(−x2 + 10x + 20) = −2x + 10 = 0, i.e., at x = 5 ∈ (0, 10) (and
y = 10 − 5 = 5), with value f(5, 5) = 45. The endpoints of [0, 10] yield the previously
found f(0, 10) = 20 = f(10, 0).

To summarize, f(x, y) attains its maximum on D at (4, 4), which is inside the triangle
D; the maximum value of f is f(4, 4) = 48. Further, f(x, y) attains its minimum on
D at (0, 0), which is along the boundary of the triangle D; the minimum value of f is
f(0, 0) = 0.

4. It is known that an ellipsoid given by x2

a2
+ y2

b2
+ z2

c2
= 1 (with a, b, c > 0) has volume 4

3πabc.
Consider all such ellipsoids that pass through point (3, 2, 1), and among them, find the ellipsoid
enclosing the least volume.
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4 Problems for Review

Solution: This problem evidently calls for Lagrange multipliers. The function we
want to minimize is f(a, b, c) = 4

3πabc. This function is continuous everywhere on R3;
it is also bounded from below because the volume f(a, b, c) ≥ 0. Such functions always
have a global minimum. The constraint equation is

g(a, b, c) =
9

a2
+

4

b2
+

1

c2
= 1.

As none of a, b, or c can be 0 (why?), the partial derivatives of g are always defined, and
actually never equal 0 (as the system below shows). Thus, we can apply the method of
Lagrange multipliers to f(a, b, c) along the constraint g(a, b, c) = 1:∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂f

∂a
= λ

∂g

∂a
∂f

∂b
= λ

∂g

∂b
∂f

∂c
= λ

∂g

∂c

g(a, b, c) = 1

⇒

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4π

3
bc = −λ18

a3

4π

3
ac = −λ 8

b3

4π

3
ab = −λ 2

c3

9

a2
+

4

b2
+

1

c2
= 1

⇒

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4π

3
a3bc = −18λ

4π

3
ab3c = −8λ

4π

3
abc3 = −2λ

9

a2
+

4

b2
+

1

c2
= 1

⇒

∣∣∣∣∣∣∣∣∣∣∣∣

a2

b2
=

9

4

b2

c2
= 4

9

a2
+

4

b2
+

1

c2
= 1

The last simplification was obtained by dividing the first by the second equation, and
then the second by the third equation. We now obtain that 9

a2
= 4

b2
and 1

c2
= 4

b2
.

Substituting into the constraint:

4

b2
+

4

b2
+

4

b2
= 1 ⇔ 12

b2
= 1 ⇔ b2 = 12 ⇔ b =

√
12 = 2

√
3.

From here, a2 = 9
4b

2 = 9
4 · 12 = 27 and c2 = 1

4b
2 = 1

4 · 12 = 3, i.e., a =
√

27 = 3
√

3 and

c =
√

3. The Lagrange multiplier is λ = −36
√

3π, while the minimal volume 24
√

3π is
obtained for the ellipsoid

x2

27
+
y2

12
+
z2

3
= 1.
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5 No Calculators during the Exam. Cheat Sheet and Studying for the Exam

Alternative Solution: There are solutions which avoid Lagrange multipliers. One
of them uses the famous “arithmetic mean – geometric mean inequality” (AM-GM
inequality). For our problem, we only need the case for n = 3:

3
√
x1x2x3 ≤

x1 + x2 + x3

3
for any x1, x2, x3 ≥ 0.

Furthermore, equality is obtained if and only if the variables are equal to each other,
i.e., x1 = x2 = x3.

Going back to our bonus Midterm Problem #6, we want to find the minimum of

f(a, b, c) = 4π
3 abc, given the constraint g(a, b, c) =

9

a2
+

4

b2
+

1

c2
= 1, where a, b, c > 0.

We have to cleverly choose here our numbers x1, x2, x3, to which to apply the AM-GM
inequality. How about applying AM-GM to the function g(a, b, c):

g(a, b, c) = 1 =
9

a2
+

4

b2
+

1

c2
⇒ 1

3
=

9
a2

+ 4
b2

+ 1
c2

3

AM-GM
≥ 3

√
9

a2
· 4

b2
· 1

c2
=

3

√(
6

abc

)2

⇔
(

1

3

)3

≥
(

6

abc

)2

⇔
√

1

33
≥ 6

abc
⇔ abc ≥ 6

√
33 ⇔ 4π

3
· abc ≥ 4π

3
· 6
√

33 = 24
√

3π.

We have proven that the volume f(a, b, c) = 4π
3 abc ≥ 24

√
3π. Equality can be attained

if and only if the AM-GM yields equality, and we know that this happens exactly when
the three variables x1 = 9

a2
, x2 = 4

b2
and x3 = 1

c2
are equal, i.e., 9

a2
= 4

b2
= 1

c2
. At this

point, we revert back to our original solution:

1 = g(a, b, c) =
9

a2
+

4

b2
+

1

c2
=

4

b2
+

4

b2
+

4

b2
=

12

b2
⇒ b2 = 12, a2 = 27, c2 = 3,

i.e., b = 2
√

3, a = 3
√

3, c =
√

3, and the ellipsoid with minimal volume passing through

(3, 2, 1) is
x2

27
+
y2

12
+
z2

3
= 1.

Although this solution avoided using Lagrange multipliers, it did use the AM-GM
inequality, which is typically proven via Lagrange multipliers. (This is why, in the first
place, the AM-GM inequality appears in the exercises in section §14.8!) Still, the above
AM-GM solution gives us a more direct approach to solving our problem and provides

an insight into why x2

27 + y2

12 + z2

3 = 1 is truly the optimal ellipsoid.

5 No Calculators during the Exam. Cheat Sheet and Studying for the Exam

No calculators are allowed on the exam. Anyone caught using a calculator will be disqualified from the exam.
For the exam, you are allowed to have a “cheat sheet” - one page of a regular 8.5 × 11 sheet. You can

write whatever you wish there, under the following conditions:
• The whole cheat sheet must be handwritten by your own hand! No xeroxing, no copying, (and

for that matter, no tearing pages from the textbook and pasting them onto your cheat sheet.) DSP
students with special writing or related disability should consult with the instructor regarding their
cheat sheets.

• You must submit your cheat sheet on Gradescope by 11AM before the exam.
• Any violation of these rules will disqualify your cheat sheet and may end in your own disqualification

from the exam. I may decide to randomly check your cheat sheets, so let’s play it fair and square. :)
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5 No Calculators during the Exam. Cheat Sheet and Studying for the Exam

• Don’t be a freakasaurus! Start studying for the exam several days in advance, and prepare your
cheat sheet at least 2 days in advance. This will give you enough time to become familiar with your
cheat sheet and be able to use it more efficiently on the exam.

• Do NOT overstudy on the day of the exam!! No sleeping the night before the exam due
to cramming, or more than 3 hours of math study on the day of the exam is counterpro-
ductive! No kidding!

These review notes are copyrighted and provided for the personal use of Spring 2021 Math 53 students only.
They may not be reproduced or posted anywhere without explicit written permission from Prof. Stankova.
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